123. Fluoro(phenylsulfinyl)methyllithium. Note on the ¹³C-NMR Spectrum of a Fluorocarbenoid

by Carmen Nájera¹), Miguel Yus¹), Robert Hässig, and Dieter Seebach*

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

(12.I.84)

Summary

The title compound is synthesized with ¹³C- and ⁶Li-labelling on the fluorinated carbon atom. H/Li-Exchange in fluoromethyl phenyl sulfoxide $(1 \rightarrow 2)$ causes a $\Delta \delta^{(13}C) = +11.4$ ppm, a $\Delta J^{(13}C, {}^{1}H) \approx 0$ Hz, and a $\Delta J^{(19}F, {}^{13}C) = +80.4$ Hz. Tentative conclusions about the structure of the title compound are drawn from these changes.

In the course of our ¹³C-NMR investigations of α -halogeno-lithium compounds, the so-called carbenoids²), we were able to generate and measure derivatives of the halogens chlorine, bromine, and iodine [1-4]²). Also, an extensive NMR study of α -N-³), α -O-⁴), α -S- and α -Se-substituted organolithium derivatives was undertaken by us [9] [10]. The heteroatom which so far defied all our attempts was fluorine. Thus, Br/Li exchange in geminal bromo fluoro derivatives either produced highly unstable⁵) or highly insoluble⁶) Li-compounds of which no NMR spectra could be obtained.

The recent report by *Reutrakul & Rukachaisirikul* [12] about the generation and synthetic applications of fluoro(phenylsulfinyl)methyllithium and their statement that this 'sulfinyl carbanion seems to be stable at 0° for at least one hour' prompted us to

¹) Visiting scientists at the ETH Zürich, June through September 1983. On leave from the Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Oviedo, Oviedo (Spain).

²) See also the references cited in [5].

³) For instance, N-methyl-N-(methoxymethyl)carbamoyllithium [6] ¹³C-labelled at the carbonyl C-atom gave rise to a t ¹³C-NMR signal ($\delta = 252$ ppm ($\Delta \delta = 90$ ppm), ¹J(¹³C, ⁶Li) = 13 Hz) at -110° (for the nomenclature of $\Delta \delta$ see [4]).

⁴) The α-ROCLi derivatives gave disappointingly broad signals even at the lowest possible observation temperatures (-130°); they were generated [7] [8] by Sn/⁶Li exchange from ¹³C-labelled precursors. ⁶Li¹³CH₂O⁶Li: δ ≈ 50 ppm (very broad). ⁶Li¹³CH₂OCH₂OCH₃: δ = 74 ppm, Δδ = 19 ppm, ¹J(C,H) ≈ 125 Hz, ΔJ(C,H) = 17 Hz, signal visible up to room temperature, THF solution (for the nomenclature of Δδ see [4]). C₆H₁₃¹³CH⁶Li(OCH₂OCH₂C₆H₅): δ = 74.5 ppm, Δδ = 6.8 ppm, ¹J(C,H) = 125 Hz, ΔJ(C,H) = -16 Hz. None of these α-ROCLi derivatives showed a ¹³C,⁶Li-coupling.

⁵) From [11-¹³C]-11-bromo-11-fluorotricyclo[4.4.1.0]undecane, a [4.4.1]propellane, no detectable organolithium species could be generated.

⁶) Unlabelled bromotrifluoroethylene was converted to trifluorovinyllithium according to the procedure of *Normant et al.* [11]. The reaction mixture contained a heavy, colorless precipitate, showed no signals in the ¹⁹F-NMR spectrum, but was cleanly quenched with H₂O to give trifluoroethylene.

$$C_6H_5SH + {}^{13}CH_3I$$

 $\xrightarrow{[9]} C_6H_5 - S - {}^{13}CH_3$ (1)

$$C_6H_5 - S^{-13}CH_3 + SO_2Cl_2 \xrightarrow{[13]} C_6H_5 - S^{-13}CH_2 - Cl$$
 (2)

$$C_6H_5 - S^{-13}CH_2CI + KF/[18]$$
-crown-6 $-\frac{[14]}{C_6H_5} - S^{-13}CH_2 - F$ (3)

$$C_6H_5 - S^{-13}CH_2F + NBS/H_2O/CH_3OH \xrightarrow{[14]} C_6H_5 - SO^{-13}CH_2 - F$$
 (4)

^a) The ¹³C-NMR spectra (THF) were measured with a sweep width of 5000 Hz and 1.25 Hz or 0.05 ppm/point; as a reference, the ¹³C-signal of THF at 1709.8 Hz or 67.96 ppm was used.

take another chance. Following known methods which were adapted to small scale preparation, we synthesized fluoromethyl phenyl sulfoxide (1), ¹³C-labelled at the fluorinated C-atom, see *Scheme 1*. The source of the label was (¹³C)iodomethane which was used to obtain thioanisol (*Eqn. 1*). Chlorination with SO₂Cl₂ (*Eqn. 2*), nucleophilic substitution with KF (*Eqn. 3*), and oxidation by treatment with *N*-bromosuccinimide in H₂O (*Eqn. 4*), produced the desired precursor **1** for metallation with (⁶Li)lithiumdiisopropylamide. The lithiation was achieved in a NMR tube in THF/(D₈)THF as described previously [4] [10] [15], and the subsequent measurement of the ¹³C-NMR spectrum (-100°; 0.13M **2**) furnished the parameters given in *Scheme 1* underneath the *Formulae* **1** and **2**⁷). The C-atom is deshielded upon lithiation, the C,H-coupling is hardly affected, while the C,F-coupling strongly increases. No C,⁶Li-coupling could be detected. The ¹³C-NMR signal of the lithiated C-atom rapidly became smaller above -90° and had disappeared at -60°, indicating a much smaller stability than expected from the literature data [12].

Only speculative conclusions about the structure of **2** can be drawn from the ¹³C-NMR spectrum⁸). The small downfield shift $\Delta\delta$ is intermediate between the small upfield shifts observed upon α -lithiation of S-derivatives [10] and the large downfield shift occurring with halogeno derivatives [4]. While the direct C,H-coupling constants decrease considerable upon H/Li-exchange in hydrocarbons, and at C(α) of the S-, Se-

⁷) The parameter for the starting material 1 were measured after quenching the NMR samples of the carbenoid 2 with moist THF at -100° .

⁸) For calculated structures of lithium fluorine carbenoids see [16] and [17].

and halogeno derivatives [3] [10], it is essentially unchanged on going from 1 to 2. A comparison of the strong increase of the direct C,F-coupling with other halogens is not possible, the only direct coupling between heteroatoms and lithiated C-atoms so far reported is that with ⁷⁷Se and ³¹P [10], which is also much larger than in the protonated precursors. However, from these increases of the coupling constants a change of hybridization, with increase of s-character of the bonds of the fluorinated C-atom seems reasonable and would lead to a structure, as shown in *Formula* 3, in which the lithium is bound to oxygen. This would also explain the lack of the C,⁶Li-coupling. However, our previous experience warrants caution with such conclusions from NMR data. As in other cases [10] [18], an analysis of the crystal structure may provide information which can be relevant also for the solution structure.

Experimental Part

For details of techniques, instrumentation, and purification of reagents and solvents, see [4] [10].

 $({}^{13}C)$ Chloromethyl Phenyl Sulfide. A modified literature procedure [13] was used. A solution of $({}^{13}C)$ methyl phenyl sulfide (0.87 g, 7 mmol), in CH₂Cl₂ (10 ml) was heated at reflux and combined with a solution of SO₂Cl₂ (0.5 ml, 7 mmol) in CH₂Cl₂ (5 ml). After 1 h, the solution was evaporated to give *ca.* 1 g of crude product which was used directly for the following conversion. IR (CHCl₃): 3150, 3100, 3080, 3070, 2960, 2930, 2860, 1585, 1480, 1440, 1390. ¹H-NMR (CCl₄): 7.6–7.0 (*m*, 5H, arom. H); 4.85 (*d*, *J* = 165, 2H, *CH₂Cl). ¹³C-NMR (CDCl₃): 135.4, 130.8, 129.1, 127.9, 50.9. MS: 161 (15, M^+ + 2), 159 (42), 158 (12), 124 (100), 123 (10), 109 (26), 77 (18).

 $({}^{13}C)$ Fluoromethyl Phenyl Sulfide (cf. [14]). To a solution [18]-crown-6 (0.16 g, 0.60 mmol) in CH₃CN (6 ml) was added KF (0.70 g, 12 mmol; dried for 20 h at 160°/0.01 Torr) and, after heating at reflux for 1 h, [${}^{13}C$]chloromethyl phenyl sulfide (0.90 g, 6 mmol). The mixture was heated at reflux for 5 days and then poured into 10 ml of ice/H₂O. Three extractions with 20 ml CH₂Cl₂ each, drying the combined org. phases over MgSO₄, and removal of the solvents furnished 0.25 g (30%) of the fluorinated product, b.p. 28°/0.01 Torr. ¹H-NMR (CDCl₃): 7.6-7.0 (*m*, 5H, arom. H); 5.7 (*dd*, $J({}^{13}C,{}^{1}H) = 171$, $J({}^{19}F,{}^{1}H) = 54$). ¹³C-NMR (CDCl₃): 134.9 (*s*); 130.7 (*d*); 129.2 (*d*); 127.8 (*d*); 88.5 (*dt*, $J({}^{19}F,{}^{13}C) = 216.7$). The compound was oxidized right after distillation.

 $({}^{13}C)$ Fluoromethyl Phenyl Sulfoxide (1) (cf. [14]). To a solution of $({}^{13}C)$ fluoromethyl phenyl sulfide (0.25 g, 1.7 mmol) in CH₃OH (5 ml), stirred at 0°, was added N-bromosucciniimide (0.35 g, 2 mmol) and H₂O (0.1 ml). After stirring for 1 h, the mixture was quenched with H₂O (20 ml). Extraction with CH₂Cl₂ (3 × 20 ml), drying over MgSO₄, removal of the solvents and distillation gave 0.25 g (92%) of 1, b.p. 65°/0.01 Torr. ¹H-NMR (CDCl₃): 7.6 (s, arom. H); 5.1 (dd, $J({}^{13}C,{}^{14}H) = 168$, $J({}^{19}F,{}^{1}H) = 48$). ¹³C-NMR (CDCl₃): 98.2 ($J({}^{19}F,{}^{13}C) = 212$); 124.8; 129.3; 129.6; 132.1.

Preparation of the NMR. Probe of Fluoro(phenylsulfinyl)(^{13}C)methyl(^{6}Li)lithium (2). A solution of diisopropylamine (50 µl, 0.33 mmol) in THF (0.5 ml) and (D₈)THF (0.3 ml; both dry!) was treated in an NMR tube at -20° with (^{6}Li)BuLi (0.30 mmol; 0.18 ml of hexane solution). After 15 min at 0°, the mixture was cooled to -100° , and slowly combined with 1 (39.5 mg, 0.25 mmol), dissolved in THF (1 ml). The measurement was carried out with a Varian-XL-100 spectrometer.

REFERENCES

- D. Seebach, H. Siegel, K. Müllen & K. Hiltbrunner, Angew. Chem. 91, 844 (1979); ibid. Int. Ed. 18, 784 (1979).
- [2] H. Siegel, K. Hiltbrunner & D. Seebach, Angew. Chem. 91, 845 (1979); ibid. Int. Ed. 18, 785 (1979).
- [3] D. Seebach, H. Siegel, J. Gabriel & R. Hässig, Helv. Chim. Acta 63, 2046 (1980).
- [4] D. Seebach, R. Hässig & J. Gabriel, Helv. Chim. Acta 66, 308 (1983), and references cited therein.
- [5] H. Siegel, Topics Curr. Chem. 106, 55 (1982).
- [6] U. Schöllkopf & H. Beckhaus, Angew. Chem. 88, 296 (1976); ibid. Int. Ed. 15, 293 (1976).

- [7] D. Seebach & N. Meyer, Angew. Chem. 88, 484 (1976); ibid. Int. Ed. 15, 438 (1976); N. Meyer & D. Seebach, Chem. Ber. 113, 1290 (1980); H. Paulsen, E. Sumfleth, V. Sinnwell, N. Meyer & D. Seebach, Chem. Ber. 113, 2055 (1980).
- [8] W. C. Still, J. Am. Chem. Soc. 100, 1481 (1978); W. C. Still & C. Sreekumar, ibid. 102, 1201 (1980); E.J. Corey & Th. M. Eckrich, Tetrahedron Lett. 24, 3163 (1983); E.J. Corey, G. Schmidt & K. Shimoji, ibid. 24, 3169 (1983).
- [9] J. Gabriel & D. Seebach, Helv. Chim. Acta 67, 1070 (1984).
- [10] D. Seebach, J. Gabriel & R. Hässig, Helv. Chim. Acta 67, 1083 (1984), and references cited therein.
- [11] J.F. Normant, J.P. Foulon, D. Masure & R. Sauvêtre, Synthesis 1975, 122.
- [12] V. Reutrakul & V. Rukachaisirikul, Tetrahedron Lett. 24, 725 (1983).
- [13] F.G. Bordwell & B.M. Pitt, J. Am. Chem. Soc. 77, 572 (1955).
- [14] K. M. More & J. Wemple, Synthesis 1977, 791.
- [15] R. Hässig & D. Seebach, Helv. Chim. Acta 66, 2269 (1983).
- [16] T. Clark & P.v. R. Schleyer, Tetrahedron Lett. 1979, 4963.
- [17] M.A. Vincent & H.F. Schäfer III, J. Chem. Phys. 77, 6103 (1982).
- [18] R. Amstutz, Th. Laube, W.B. Schweizer, D. Seebach & J.D. Dunitz, Helv. Chim. Acta 67, 224 (1984).